
Innovative Language-Based & Object-Oriented Structured
AMR using Fortran 90 and OpenMP

Dinshaw S. Balsara (NCSA) and Charles D. Norton (NAS-4-JPL)
New Trends in High Performance Computing (Award Submission)

Parallel adaptive mesh refinement (AMR) is an important numerical technique that leads to
the efficient solution of many physical and engineering problems. While some AMR libraries
have been designed, there are many advantages to considering alternative approaches based
on language paradigms and standards. In this paper, we describe how AMR program-
ming can be performed in an object-oriented way using the modern aspects of Fortran 90
combined with the parallelization features of OpenSIP. This unique approach combines
efficiency, portability, and maintainability for the application scientist that requires pro-
gramming flexibility beyond the features a static library may provide.

Introduction

Adaptive methods are extremely useful in the solution of large scientific problems with complex
geometry, but sophisticated programming and powerful computational resources are required.
Since ANIR is complicated, involving the manipulation of abstract structures like hierarchical
distributed mesh components of varying resolution, scientists currently rely on libraries to hide
the complexity of message passing on large distributed memory parallel systems. Designing
an all-encompassing library, however, that is suitable for any kind of AMR application is ex-
tremely difficult-probably impossible. Some researchers are pursuing structured AMR library
approaches using the C++ programming language [5, 61, but these have not yet demonstrated
high performance, scalability, or popularity for a large class of AMR applications.

We introduce an exciting solution using language-based development that excels with the
strengths of an SMP/ccNUMA environment and matches MPI performance in a message passing
environment. Our approach, based entirely on well-defined standards, reduces programming
complexity, preserves the investment in existing Fortran-based solvers, and benefits from years
of compiler optimization techniques. Indeed, this is the first work that demonstrates a scalable,
efficient? and complete approach to AMR that integrates emerging trends in high performance
computing while returning control of software development to the user, rather than relying
on the static features of a library. We illustrate this approach by applying it to Balsara’s
RIEMANN framework, see [l] and references therein.

Language-Based Design for Parallel AMR

Our approach combines the parallelizing directives of OpenMP with the Fortran 90 standard
for structured AMR. We have developed efficient, parallel, and scalabIe methods for performing
all of the tasks required. This includes creation and deletion of AMR hierarchies, processing
of inter-grid transfers across/within levels, and the solution of these grids anywhere in the
hierarchy in a load balanced, and parallel, way.

Object-Oriented AMR with Fortran 90

Introducing object-oriented programming techniques with the new features of Fortran 90 (3, a]
makes i t possible build intricate AMR structures that are efficient. While the array-syntax

1

and dynamic memory management features are most familiar, new features including mod-
ules, derived-types (user defined types), use-association, generic interfaces, and (safe) pointers,
simplify AMR data structure design.

Fortran 90 allows us to create, manage, and delete grid types that are used in the solution
process. These grids can overlap and support parent, child, and sibling relationships across
AMR levels along with the interpolation of boundary conditions. Collections of grids at a given
level in the AMR hierarchy totally cover the regions that need refinement. Fortran 90 modules
allow one to define specific features that can be applied to the grids, either as a collection or
individually. Additional features useful for the solution process can be included in the module
as well, and when used in main programs that allows objects to be created. State changes in the
objects are limited to the routines that the module makes public. This object-oriented design
allows all grid operations to be completely parallelized including the regridding strategies [2].

Using OpenMP for AMR Paral le l izat ion

The features of OpenMP that complete our approach are the directives that support data
distribution, generation of threads for independent loops, and the af in i ty clause that allows
one to support the “owner-computes” rule for efficient processing. We have also implemented a
very efficient load-balancer to ensure that grid objects are created and processed in the hierarchy
in a balanced, and parallel way. Figure 1 briefly shows the use of Fortran 90 object abstractions
and the directives. The code segment illustrates how a series of dynamically defined grids is

type (s ing le-gr id) , po in te r : : t h i s
i n t ege r , dimension(max-single-grids) : : array-f or-af f i n i t y
! $SGI DISTRIBUTE array-for-aff in i ty(cyc1ic (1) 1
!$OW PARALLEL DO PRIVATE(ig r id , t h i s)
! $OMP& SHARED(leve1, gr id- is-act ive, pointers- to-gr ids)
! $SGI+AFFINITY (i g r i d) =DATA (array-f or-af f i n i t y (i g r i d 1)

do i g r i d = 1, max-single-grids
i f (g r id - i s - ac t ive (l eve1 , i g r id) == 1) then

t h i s => pointers-to-grids(leve1, ig r id)%sgp
ca l l wrapper -so lver -s ingle-gr id (th i s , . . . I

end i f
end do
Figure 1: OpenMP/Fortran 90 object-oriented multi-grid parallel structured AMR.

processed at an AMR level, and how a Fortran 90 wrapper is used to call an existing Fortran 77
solver. The affinity clause, and the parallel do, ensure that processors work on the grids that
they themselves own’. While not all the details are gi.ven here, this demonstrates that all steps
associated with constructing hierarchical grids, managing their solution across various AMR
levels, and supporting their load balance, can be accomplished based entirely on a parallel
compiler language-based approach. A secondary benefit is that the code can run sequentially
by simply ignoring the directives.

‘&lost of the arrays could be replaced with lists, but arrays are demonstrated for simplicity. Module and
object definitions have also been omitted in this abstract.

2

grids

125
150
175
200
250
330
375
450
525
625
740

round-robin
binning
186.09
180.38
153.88
113.76
128.61
118.60
105.73
94.15
90.50
78.33
81.13

1st load
imbalance

64.15
39.91
26.62
5.41

22.20
8.04
9.00

13.40
6.44
4.88
5.67

2nd load
imbalance

64.15
27.78
24.19
4.97
3.46
0.74
1.05
2.47
0.73
0.63
1.28

3rd load
imbalance

64.15
26.77
23.54
4.97
2.55
0.40
0.24
0.33
0.11
0.12
0.10

4th load
imbalance

64.15
26.77
23.54
4.97
2.55
0.40
0.20
0.16
0.05
0.04
0.03

5th load
imbalance

64.15
26.77
23.54
4.97
2.55
0.40
0.20
0.12
0.05
0.04
0.03

6th load
imbalance

64.15
26.77
23.54
4.97
2.55
0.40
0.20
0.12
0.05
0.04
0.03

Table 1: Percentage load imbalance for successive iterations of the load balancer.

Language-Based, Dynamically Load Balanced, Parallel Performance

In AMR, where changes in computational work can only be estimated at run-time, applications
require dynamic load balancing over each level in the AMR hierarchy. We have designed a
specialized Ioad balancer that is uniquely well-suited for AMR applications. The load balancer
is iterative, and improves in quality with successive iterations. It utilizes a pairwise exchange
of load assigned to available processors such that an exchange causes a maximal reduction in
load imbalance between pairs of processors. The computational cost of the algorithm is low,
and it can be parallelized easily.

Table 1 compares round-robin binning of tasks to our load balancer where 125 to 740 tasks
are applied to 100 processors. There is a 300% difference between the minimum and the
maximum load, which is assigned randomly. Note that the round-robin approach has a large
percentage load imbalance, while our approach quickly reduces load imbalance to less than 1%
in a small number of iterations. The load associated with updating a single grid is proportional
to the number of computational zones on the grid. Table 2 shows the cumulative speedup on

an AMR level. part-;rJvill explore the language-driven
implementation alon performance enhancing schemes in

will also present applications to several interesting elliptic and
hyperbolic systems.

of Processors

64.75 35.60 19.60 10.03 5.21 2.66 1 Cumulative Speedup
0.42 0.77 1.40 2.74 5.27 10.32 27.52 Time (seconds)

64 32 16 a 4 2 1

Table 2: Performance results for scalability on processing an AMR level.

References
[l] D. Balsara J. Quant. Spectroscopy and Rad. Transfer, 62:167-180, 1999.

[2] ?VI. Berger and I. Rigoutsos. IEEE Trans. on System, Man, and Cybernetics, 21:61-75, 1991.

[3] V. K. Decyk, C. D. Norton, and B. K. Szymanski. Sci. Pro$., 6(4):363-390, LVinter 1997. 10s Press.

[1] C. D. Norton. In J. Schaeffer, ed., High Perf. Comp. Sys. and Applications. pg. 17-58. Klnwer, 1998.

3

[5] M . Parashar, et. al. In Proc. SC’97. IEEE Computer Society, Nov. 1997.

[6] D. Quinlan. In Proc. IMA Workshop on Structured AMR, Minneapolis, MS, March 1997.

4

